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Synopsis

It is attempted to give a comprehensive theoretical account of the dynamics of statistical 
phenomena in physics. On the basis of merely a few simple constraints one arrives at equations 
of motion for a field, which field may be of type of a probability density. The basic equations of 
motion are linear integro-differential equations. In § 3 we discuss the formal properties of solu­
tions of the equations of motion. Next, in § 4 we derive the family of degradation functions— 
entropy being one example—which account for common properties of systems and for the ap­
proach towards equilibrium. In § 5 we treat the question of differential equations of motion. 
We find a remarkable limitation of differential equations. Finally, § 6 contains a number of 
exact solutions of simple integral equations with divergent kernels.
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§ 1. Introduction

In the following we shall study the general theoretical framework for 
dynamical phenomena in statistical physics. We aim to discuss, on an abstract 
basis, the behaviour in time of physical systems. If a system is described 
by a Lime-dependent field within a generalized space, one can single out 
a few properties which must be common lo many, or to all, phenomena in 
statistical physics. These properties can be reformulated as a framework for 
equations of motion of the field, in terms of integral equations or integro­
differential equations. Within this framework we derive a number of con­
sequences as to the possible behaviour of the field, which results are obtained 
even before definite equations of motion are stipulated.

During our studies, the topic gradually separated into four distinct, 
though not unconnected, parts. One part is the question of linear equations 
of motion, and their formal properties. Another concerns actual analytic 
solutions of simple cases. A third question is that of common properties of 
systems, accounted for by a family of degradation functions, of which en­
tropy is merely one example. The fourth part concerns differential equa­
tions, both as approximations and on their own. They turn out to have 
a surprising limitation. As it will appear, our account of each subject is 
incomplete, but we hope that it is carried far enough to elucidate the main 
questions in each instance.

As indicated, we enter on questions familiar from widely different fields 
of research. It may well be that many of the results at which we arrive 
are discussed with greater precision and in more detail in texts dealing with 
mathematical probability theory, with statistical mechanics, or with wave 
mechanics. Our aim is merely to build up a simple, consistent framework. 
We try' in particular to avoid concepts and structures, however admirable, 
that are unnecessary for our purpose. The reader is therefore asked to take 
much the same detached attitude as Gibbs in his discussion of statistical

1*
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mechanics, and to consider primarily whether there is agreement between 
the elementary premises and the conclusions.

Though abstract, these studies were in part prompted by a practical 
necessity. It arose in our previous investigations of a minor subgroup of 
phenomena, i.e. the integral equations occurring in atomic collisions where 
a penetrating particle dissipates energy and exchanges momentum in a 
substance12’ 13). Characteristic cases are here, firstly, the multiple scattering 
in angle of the incoming particle by a randomly distributed substance3’ 18>; 
secondly, the distribution in energy of an incoming particle, as a function 
of time, this being a one-way process with only decrease of energy; thirdly, 
the quite complicated phenomena of changes of transverse energy in direc­
tional effects for fast charged particles moving through crystals14). We have 
worked out a number of analytic solutions of the first two cases, with diver­
gent total cross sections (cf. § 6). For directional effects there is a particular 
need of establishing the rules to be followed when introducing approxima­
tion procedures - like differential equations or perturbation theory — in at­
tempts to solve the equations of motion.

Another group of phenomena may be exemplified by the dynamics of 
a degenerate free electron gas where, by means of the dielectric description, 
one can study linear dynamic properties in considerable detail and follow 
the trend towards equilibrium.

It can be useful for the reader to take cases of the above kind as pos­
sible illustrations in the following. We might mention that although the 
problem of the behaviour in time and in phase space of an ensemble is 
within the scope of the present discussion, the reader should hardly, in the 
beginning at least, consider the phase space ensemble as a representative 
example (cf. § 5).

§2. Basic Properties of Systems

This chapter should serve two purposes. As a secondary purpose we 
introduce the terminology and concepts to be used in the following. Pri­
marily, however, we want to specify basic physical properties which char­
acterize various types of systems. The properties are introduced as six 
constraints, of which four are common to those systems that are of main in­
terest in Ibis paper. Other constraints specify systems we wish to study 
first, because of their simple basic properties or because they are of interest 
in applications. The results derived in the following chapters rely on a 
varying number of constraints, to be specified in each case.
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The Basic Constraints

We suppose that phenomena in statistical physics, e.g. of the kind men­
tioned above, can be described by a function, a(x,f), depending on a spa­
tial variable x, within a generalized space, and on a time variable, t. The state 
of a system is completely specified at a lime I if a(x,f) is given for all x. 
The physical quantities that can be calculated within such systems will be 
discussed later.

The space variable x is usually considered as a continuum variable in 
a space of one or several dimensions. When necessary, we write the space 
variable explicitly as a vector, x. It may also be a discrete variable k = 1,2, 
3, . . . N, with N finite or infinite. The discussion is usually formulated for 
continuum variables and is meant to include the discrete case.

We now introduce a number of constraints, specifying properties of the 
systems in question. The first constraint, supposed to be valid for all systems, 
is that the state of a system at a given time uniquely determines its state at 
any later time, or

a(x,t) given for all x -> aÇx',t') for all x' and all t' > t. (2.1) 

We have introduced the variable t as a familiar time concept. The variable 
t may, however, also represent other quantities with similar one-way pro­
perties, e.g. in atomic collisions the path length moved by a particle, or 
even the energy of a particle during slowing-down.

The second constraint corresponds to conservation of probability in 
simple phenomena. We demand that

(2-2)

J’«(.r,/)da' = const, and can be normalized to unity, which will be a standard 
convention. Still, it occasionally becomes convenient to treat functions which 
can not be normalized, even though (2.2) applies.

The third constraint indicates that the field a (x,V) is not unlike a prob­
ability density. We assume that a(x,t) is real and non-negative,

(2-3)o(.r,/) > 0.a (a;,/) real,

This constraint turns out to have remarkable consequences.
The fourth constraint imposes superposition, thereby confining the phe­

nomena to a linear behaviour. We demand that if ai(x,£) and az(x,r) are 
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solutions of the equations of motion, then also Âiai(.r,Z) + Â2O2(æ,0 will he 
a solution, or

ai(.r,0 and a2(x,f) -+ Âioi(æd) + Â2«2(a:d). (2-4)

To be more precise, and in view of the other constraints, the content of eq. 
(2.4) is: If m and «2 are solutions for t > to, and if 2im(a:,fo) + ^202(ædo) 
is an allowed function, then Âiczi(æd) + A2«2(æ>0, - ^o> is a solution.

The constraint (2.4) might seem to be a serious limitation of the scope 
of the treatment. It does, however, correspond to the basic cases one must 
necessarily treat at first. Moreover, it should be remembered that in the 
quite general cases of quantum theory or of dynamics of ensembles one is 
in fact concerned with linear equations of motion.

We next come to a useful limitation in many initial studies. In mechanics, 
for instance, it is often profitable to study first the case of a time-independent 
Hamiltonian. One may then later, at least to some extent, study a time­
dependent Hamiltonian, e.g. in order to initiate and terminate the phenom­
enon in question. The fifth constraint limits the treatment to time-independ­
ent dynamics, or invariance of solutions towards displacement in time,

a(x,t) -> a(x,t + t), any fixed real r. (2.5)

For practical purposes one further simplification is often valid. The 
sixth constraint concerns invariance of solutions towards displacement in 
space, or

a(x,t) -> a(x + £,/), for any real £. (2.6)

The displacement may be within a multi-dimensional space x.

Equations of Motion

We construct next the equations of motion, as they emerge by successive 
introduction of the constraints. We always assume validity of the first con­
straint, (2.1). Although it is possible to consider non-linear cases, we shall 
for the present disregard them, and apply the fourth constraint, (2.4). From 
the first and fourth constraints we therefore conclude that if the field a(x',t') 
is known at time t' then

a (a-,/) = J dx'T(x,t;x', t'yciÇx', t'), t > t', (2.7)

or
a*(0  = ä(t) = T(M')ä(f).

J

The quantity T will be called the propagator, having the property
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T(x,t',x',t) = ô(x - x'). (2.8)

This way of stating the constraint is, however, somewhat indefinite at first, 
although it will be useful later. When we ask for the equations of motion, 
it is more profitable to summarize the first and fourth constraints as an ex­
pression for the time derivative of a(x,t), which must receive a contribution 
from the point y, of type of r(x,y,f)a(y,f), so that

d(.r,/) = J dyr(x,y,t)a(y,t), (2.9)

where the unspecified integral, as always, extends over the total system and 
may be multi-dimensional. Next, we apply the second constraint, (2.2), de­
manding conservation. It implies that, in (2.9), we must have

dxr(x,y,f) = 0, for all y, (2.10)

for if (2.10) did not hold, one could choose such functions a({/,/) in (2.9), 
e.g. ô-functions, as would violate eq. (2.2).

We may make a preliminary reformulation of (2.10). Outside the diag­
onal, i.e. for x + y, we alternatively denote r(x,y,t} as G(x,y,t)- The equa­
tion (2.10) is then formally fulfilled for any G(x,y,t) if F in (2.9) is given by

r(x,y,r) = G(x, y, /) - ô(x - y)dx'G(x',x, t). (2-11)

The third constraint, (2.3), demands that «(.r,/) remains real and non­
negative. Suppose that, in some point xq, a(xo,f) = 0, whereas in other 
points u(x,/) is arbitrary but non-negative. In the equation of motion, (2.9), 
we must then demand â(xo,t) 0. But this requires that r(x,y,t} is non­
negative for x + y, or

G(x,y,G) real, G(x,y,t) > 0. (2-12)

The total result of the four constraints can now be written as a basic inte­
gral equation, superseding the preliminary equations (2.11) and (2.12)

å(æ,f) = $dy{G(jv,yJ)a(y,t) - G(y,x,t)a(x,t)}, G(x,y,t) > 0. (2.13)

This equation is the starting-point of most of our further studies.
As to the behaviour of G(x,y), we generally consider it as a con­

tinuous function, but it may diverge for y -> x. In fact, we allow that
> ec?y<7(y,.r) -> oo for e -> 0. The permitted degree of divergence de­



8 Nr. 9

pends on the symmetry of the system, as mentioned in § 6. The limit of 
G(.r,y), or part of it, becoming infinitely narrow is discussed in connection 
with differential equation approximations in § 5.

In the majority of the cases to be studied here, we add the fifth con­
straint, (2.5), so that solutions are invariant towards time displacements. 
It follows from eq. (2.13) that then G(x,y,t + r) = G(x,y,G), for all r, and 
eq. (2.13) reduces to

g(.t,/) = Jdy{G(a',z/)u(y,/) - G(y,.r)o(.x,/)}, G(x,y) > 0. (2.14)

Finally, we occasionally invoke the special constraint (2.6), concerning 
displacement in space, according to which, apparently, in e.g. (2.14)

G(x,y) = G(x - y). (2.15)

Classification of Systems

Consider time-independent systems, so that eq. (2.14) is valid. We have 
shown that G(x,y) > 0, but in regions of considerable size one can then 
have that G(.r,y) = 0. This may result in complete lack of connection, both 
directly and indirectly, between some regions of x-space. Such systems must 
be regarded as divisible into subsystems. We therefore define an elementary 
unit, the indivisible system. To this end, consider two points, xi and X2, 
within a system. Let first a(x,to) = 0(x - xi), and if then the integral equa­
tion implies that a(x2,t) 4= 0 at some later time t > to, then xi is said to 
communicate with X2. This communication is called direct if it occurs in 
one step, i.e. if G(x2,xi) 4= 0.

A system is now called indivisible if, for any set of points (æi,^) within 
it, both xi communicates with X2, and X2 with xi. The system is indivisible, 
with direct communication, if G(xi,X2) =1= 0 for all x’i,.T2 within it. In the 
following, we are mainly concerned with indivisible systems. Some charac­
teristic examples are discussed in the beginning of § 3.

An opposite extreme to an indivisible system is, as indicated above, a 
system which can be divided into completely unconnected subsystems. This 
will be called a separable system.

In between these two extremes there is a considerable range of systems 
with partial communication of varying type. Of these systems we shall only 
be interested in one-way systems. They are essentially one-dimensional 
systems, and may for instance be characterized by the condition that .i’i 
communicates with X2 if and only if x’i < X2-
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Projections

The state of the system at the time t is given by the distribution in space, 
a(rr,t), the integral of which is conserved in time. One may then calculate 
projections (or averages) of various functions. There are two types of pro­
jections.

Firstly, for a function /(.x), depending on the spatial variable x, the 
projection is

</’(a?)> = J f(x)a(x,f)dx, (2-16)

and will in general be a function of time. Note that for discrete variables, 
/'(x) -> fk, a(x,f) -+ this formula becomes the scalar product of two 
vectors, </> = 2/* ’ Qft(O = /•«(/). H thus the projection of a fixed vector

* 
f on a time-dependent vector ä(f). Obviously, the function f may also be 
allowed to depend explicitly on time, f = f(x,t).

Secondly, instead of (2.16), one may consider projections of another 
kind of functions, i. e. functions depending on a,

<g(a)> = J g(a(x, f))a(x, f)cte, (2.17)

or 2<7(a*(O) a*(O  f°r discrete variables. The functions q(a) may be de­
ft

noted as spectral functions. It is possible, but less common, to have pro­
jections of functions depending on both x and a.

Transformation of Spatial Variables

Suppose that the one-dimensional spatial variable x is replaced by 
z = z(x), and that z(x) changes monotonically with x, the latter in order 
to have simple uniqueness of transformation. Since then

a (.r, f) dx =
dx

a(x,f) — dz,
dz

the distribution n1(z,0 on the z-axis is

öi(z,0 a(x, t)
dx
dz

(2.18)

where \dx/dz\ becomes the Jacobian in the general multi-dimensional case. 
In all transformations the quantity

dP = a(x, f)dx = cii(z, t)dz

remains invariant, as does its integral over space.

(2.19)
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Conjugate Field

When the integral equation of motion (2.9) or (2.13) is given for the 
field rz(rr,f), there exists immediately one other equation of motion, valid 
for a different field. In fact, introduce a field b(x,t), obeying the equation*

* An equation of motion of type of (2.20) is often called the backward equation, (2.13) 
being the forward equation.

b(x,t) = - $ dyb(y,f)r(y,x,t) = - $ dy{b(y,t) - b(x,t)}G(y,x,t), (2.20) 

or in matrix form b = -1)T. This equation of motion, which we call con­
jugate to (2.9) and (2.13), is governed by the transposed /'-matrix. We 
describe the field b(x, f) as conjugate to u(.r,/). Note that we introduce a 
minus sign in the time derivative in (2.20). This is so far a convention. Of 
the conjugate field we know immediately that it has an equilibrium solution

/;°(.r) = const., b° = Cl, (2.21)

as is obvious from (2.20). We can evidently also conclude that, if b(x,t) is 
non-negative, the function b(x',t') is non-negative at all previous times 
t' < t. In this backward sense, the conjugate field therefore fulfills the 
third constraint, (2.3). We do not, however, know beforehand whether the 
conjugate field obeys a conservation law.

It turns out that, in the discussion of solutions of the equation of mo­
tion for rz(.r,/), the conjugate field is often a useful auxiliary quantity.

The Current

For a quantity with conservation in space one can introduce a current 
when the equation of motion is known. In one dimension this is straight­
forward. From knowledge of the transition rate G(.r',y) between any two 
points one finds immediately that the total flow per unit time in the positive 
direction past a point x will be

(2.22)

where the integration over y alternatively might be allowed to be between 
the system boundaries. The current then fulfills the equation

d(.r,f) = - —j(x,t).
ox

(2.23)
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Boundary Conditions and Sources

In the following we always discuss the behaviour of systems which are 
isolated. There is then no current away from the system or into it. For 
discrete systems with finite N this condition is obviously fulfilled by the 
equations of motion (2.13). For a continuum system defined in a finite 
closed region, i.e. including its boundaries, the demand of an isolated system 
is also straightforward. When the system is infinite, however, the boundary 
conditions are less simple. For practical reasons, we usually consider a 
finite but arbitrarily large interval, L. The system is then supposed either 
to have zero current at the boundaries, or to be periodic. The two condi­
tions are quite different, the former imposing a rest system and the latter 
allowing transformations to moving coordinate systems. These questions are 
elucidated by an example in § 6.

Note that when we introduce the conjugate field, as well as eigenfunc­
tions of the fields, the prescribed boundary conditions must be obeyed in 
each instance.

An alternative way of analysing the dynamics of systems is to introduce 
sources of the field, depending arbitrarily on space and time. One then 
adds a term S(x,t) on the right-hand side of e.g. (2.14), and finds the forced 
motion. This procedure is familiar from, for instance, the dielectric descrip­
tion of an electron gas. The method can be advantageous, but we shall not 
employ it.

§ 3. Properties of Solutions

In this chapter we derive a number of general properties of the solutions 
of the integral equation. We first obtain the basic result that, for indivisible 
systems, there is exactly one equilibrium solution, and it is everywhere pos­
itive. Next, the equations of motion are transformed to normal coordinates, 
and the field is found to tend towards the equilibrium. Third, we treat sum­
marily the general question of eigenvalues and eigenfunctions of the field 
and of the conjugate field. The formalism embraces features known from 
wave mechanics. Fourth, the field propagators are discussed, and are used 
to study reversibility in space.

Equilibrium Solution

By equilibrium we mean that d(.r,/) in (2.14) is zero everywhere, with 
the condition that the system is isolated in the sense mentioned above. An
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equilibrium solution, (7°(.r), therefore satisfies, for any x, and with zero 
current through all boundaries, 

y)o°(y)-G(y,aOo°(.r)} = (3-0

or r-ä° = 0, in matrix notation. As indicated, we suppose that G is real 
and non-negative. The integration in (3.1) is the definite integral over the 
total system.

The original time-dependent function a(x,t) was assumed to remain 
non-negative. If it tends towards an equilibrium function*,  the latter must 
also be a non-negative function. In the present connection, however, we ask 
for all possible solutions a°(x) of (3.1). Equilibrium solutions (7°(.r) are 
real functions of x, because G is real.

We must verify at first that there is at least one solution of (3.1). We 
refrain from proving this for the widest possible groups of systems. The 
proof would, at this stage, be more cumbersome than rewarding. We need 
only demonstrate, by examples, that systems of interest have the required 
property. The general reason for this is seen easily for the group of finite 
discrete systems, i.e. for a finite discrete matrix jT. In fact, conservation, 
(2.10), implies that 1 •/’’ = 0, so that the determinant | E| = 0, and then eq. 
(3.1) must have at least one solution, irrespective of the symmetry properties 
of G.

The systems of the second major group are the following ones, with 
explicit solutions of (3.1). Suppose that the kernel in (3.1) is symmetric, 
G(x,y) = G(y,x), or may be made symmetric by transformation of the space 
variables. The symmetric kernel G(x,y) may then be taken outside the 
brackets in (3.1), and an equilibrium solution is a°(x) = const., or ä° = 
C-l. This solution is valid for all symmetric discrete or continuum cases, 
irrespective of the interval within which the system is defined. The symmet­
ric case is analogous to a situation often met with in quantal or classical 
scattering. More precisely, the case of symmetric kernel G(x,y) will be 
referred to as microscopic reversibility in space. It may be noted that equi­
librium solutions can persist also in time dependent systems. If G = G(x,y,G), 
and is symmetric, then a°(æ) = const, is always an equilibrium.

A third simple group of systems consists of those with displacement 
invariance in space, G(x,y) = G(x — y), cf. eq. (2.6). As to boundary con­
ditions, one possibility is that a system is periodic (like e.g. angular vari-

* Note that in infinite space the function a(.rg) will usually tend to zero everywhere, but 
it can tend to an equilibrium function a°(x) in the sense that a(x,f)/a(x',f) -> a°(x)/a°(a:')- 
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ables), with repetition after a fixed, but arbitrarily long period. It is then 
obvious that a°(.r) = const, is a solution of (3.1) for the system in question.

Beside the above group of systems one has a quite different group, con­
sisting of communicating systems. Of these, a well-defined subgroup is the
set of one-way systems, where for a discrete variable (e.g. k = 1,2, . . 
and Gkj = Ck-ôkj_1) a typical equilibrium solution is a® = 1, a® =

, N,

Uniqueness of Equilibrium

Having ascertained that there is at least one equilibrium for the systems 
of interest, we propose to show the following result, valid for indivisible 
systems. Any solution of (3.1), if positive in one point, must be positive every­
where in rr-space,

indivisible systems: n°(æ) > 0 for all x. (3.2)

Accept then that (3.2) holds and suppose that there are two or more equilib­
rium solutions. Any linear combination of these is also a solution of (3.1). 
But a linear combination can always be arranged to have both positive and 
negative values. This is in contradiction to (3.2). We have thus shown that 
(3.2) implies that there is exactly one equilibrium solution.

Let us now complete the proof by showing the validity of (3.2). We 
consider a system which is indivisible and isolated. Suppose that (3.2) is 
not fulfilled by o°(x*),  a solution of (3.1). Divide the space into region I 
where a°(rc) > 0, and region II where a°(æ) < 0. Integrate (3.1) over x 
within the whole region II. This integral is called Q, and must be zero ac­
cording to (3.1). Now,

because the symmetric part, where both y and x belong to II, is identically 
zero. Since a°(II) < 0 we find by omitting the second term in (3.3)

(3.4)

The latter inequality follows because a°(y) is positive everywhere, and 
G(II,1) must be different from zero for some set (x,y) in an indivisible 



14 Nr. 9

system. The resulting contradiction between eqs. (3.4) and (3.1) implies 
that (3.2) holds.

In the following we repeatedly use the result that, for indivisible systems, 
tz°(.x) is positive and equilibrium is unique. As to the properties of other 
systems, the communicating systems have not in general a unique equilib­
rium. In the special case of one-way systems there is uniqueness of equilib­
rium, but fz°(.r) = 0 except in one point, so that (3.2) is not fulfilled.

Transformation to Normal Coordinates

For indivisible systems, with a unique, positive equilibrium solution 
<z°(.r), the quantity o°(x)d.x’ = dz is a basic measure of a priori distribution, 
corresponding to phase space volume in statistical mechanics. It may then 
be worth while to indicate how the equation of motion can be transformed 
to suitable variables, i.e. normal coordinates, where the basic density 
measure is explicit. Still, it is not always necessary or convenient to make 
this transformation.

When transforming to the normal coordinates we find

a (u 0
a(x,f)dx =---------aQ(x)dx = a(z,f)c?z. (3.5)

a°(x)

Hereby we have obtained an invariant measure of the field,

rz(x’, /)
a(z’O = o7 W<zu(.r)

which function is well-defined, because rz°(.r) is positive. Usually, we con­
sider a as a function in the z-space, but we may as well regard it as a func­
tion of x. The equilibrium solution rz°(xj contains an arbitrary factor. If 
rz°(.x) is introduced as in eqs. (3.5) and (3.6), then a is normalized to unity 
because a is normalized.

The field equation for a is easily obtained. Define y and g by

F(x,y) = a°(.x)y(z,z'), ]
G(x,z/) = a°(x)y(z,z'), j

where z and z are the normal coordinates corresponding to x and y, re­
spectively. Again, we may sometimes consider y and g as explicit func­
tions of x and g.

According to (2.9), (2.14), (3.5) and (3.7)

a(z,/) = |dz'y(z,z')a(z',f) = jt7z'{y(z,z') a(z',0 - y(z',z)a(z,f)}, (3.8) 
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where then, from conservation (2.10),

fdzy(z,z') = 0, (3.9)

and from (3.1)
|dz'y(z,z') = |dz'{ø(z,z')-ø(z',z)} = 0, (3.10)

corresponding to equilibrium being the uniform distribution.
As to the field conjugate to a(z,/), we denote it as ß(z,t) and can simply 

introduce
ß(z,t) = b(x,f), (3-11)

i.e. ß(z,C)dz = b(x,t}a°(x)dx, so that from (2.20)

ß(">0 = - j dz'ß(z',t)y(z',z) = - $dz'{ß(z',t) - ß(z,t)}g(z',z). (3.12) 

Eqs. (3.12) and (3.8) show that ß(z,t) (or b(x,t)) is in fact the field con­
jugate to a(z,Z), in the same way as (2.20) is conjugate to (2.13).

It is apparent that, because a(x,t) has an equilibrium, the conjugate 
field has conservation. In fact, according to eqs. (3.12) and (3.10)

a0(x)b(x,t)dx = Jdzß(z,f) = 0. (3.13)

Trend towards Equilibrium
The trend towards equilibrium is easily found if, by means of (3.10) 

the equation of motion (3.8) is written in an alternative way,

<x(z, f) = f t/z'</(z,z'){a(z', 0 - a(z,/)}. (3-8')

Eq. (3.8') is seen to be quite similar to (3.12). It follows from (3.8') that 
the largest value of a(x,t) must always decrease, whereas the smallest value, 
if any, must increase. This indicates a tendency towards equilibrium, cf. 
also § 4. The result remains valid if the function a in (3.8') is allowed to 
be negative.

Eor the conjugate field already the original equation of motion (2.20) 
implies that the largest value of b(x,t) decreases, and the smallest increases, 
as one goes backwards in time.

Eigenvalues and Eigenfunctions
The equilibrium solution o°(.r) in (3.1) is merely one of the stationary 

solutions of (2.14), albeit the most important one. Consider now stationary 
solutions in general, for isolated, indivisible systems. Make the ansatz that 
a solution of (2.14) is of the type av(x) -exp(~ Ârf), i.e. the equation be­
comes
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Åvav(x) = - \ dyr(x,y)av(y) or Åvav = -l'-av. (3.14)

The equilibrium solution corresponds to Åo = 0. In parallel to (3.14) we 
may directly consider the invariant field a, where

^/</(-.-')(ar(z') - aX-))
(3.15)

= ~ÿ’^- J

The result obtained from (3.8') proves, firstly, that for the non-equilib­
rium stationary solutions it must hold that

Re(2„) > 0, (3.16)

because for no function a(z,f) is there a tendency away from equilibrium. 
Secondly, since o(æ,f) is conserved, these eigensolutions obey the equation, 
for v + 0,

Jav(x)drr = ÿ <zv(z)dz = • 1 =0. (3-17)

The result (3.17) is part of a more general orthogonality theorem. We prove 
the theorem in two steps. First, we consider the limited, but common, case 
of symmetric kernels (microscopic reversibility in space, cf. p. 19). Next, 
we give the proof in the general case.

Suppose then that ÿ is symmetric, y(z.z') = y(z',z), and use matrix 
notation for brevity. Prove first that the are real. The complex conjugate 
of eq. (3.15) is Â*â*  = -ÿ-â*.  Multiply (3.15) by ä*  on the left

Åp <Xp ' oip ■ oc'p y QCp <x.y y Xp <Xp y <Xp ÅpOCp &p> (3.18)

so that Å*  = Åv, and therefore the eigenfunctions xv = av(z) may be chosen 
to be real.

Prove next, also for symmetric ÿ, that eigensolutions belonging to dif­
ferent Åv are orthogonal. Introduce two eigenfunctions, äv and âfl. Multiply
(3.15) by ä^,

’ ocv = — tx^ ’ y ‘ <xv = — ccv ‘ ÿ • ’ <xv, (3.19)

yT being the transposed matrix. It follows that

äfl • äv = 0 for M= Åv, if ÿT = ÿ. (3.20)

In the symmetric case, the äv may therefore form an orthonormal set.
For the purpose of studying the general orthogonality theorem we in­

troduce the conjugate field. We define its eigenfunctions as bv(x) • exp(Åvt), 
so that, corresponding to (3.14),
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bvÅv bv I. (3.21)

We multiply (3.14) by bu and obtain

' av = ~ b[i ' ’ (~iv- (3.22)
It follows that

= 0 if Åfl + Åv. (3.23)

This result is quite general. It is independent of the previous results in this 
chapter, such as «°(æ) > 0. It is valid not only for the original equations 
of motion (2.14) and (2.20), but even when G(x,y) is allowed not to be 
real and positive. In fact, (3.23) is a consequence of merely the first, fourth, 
and fifth constraints, i.e. (2.9) with F =

According to eq. (3.23) the eigenfunctions ar(x) do not in general form 
an orthonormal set. They do it when, as in eq. (3.20), av = bv.

If we can normalize and may assume non-degeneracy, we obtain from 
(3.23)

J ^(æ)ar(æ)rfx = ôpv. (3-24)

For a function /(x) the coefficients of an expansion

/’(x) = 2cvar(x), (3.25)

are according to (3.24)
cv = JöF(x)/’(x)dx. (3.26)

Although it would be easy, we shall at this point not enter into further 
details of the formulation by eigenfunctions, as based only on eqs. (2.1), 
(2.4) and (2.5). It is apparent that the present formalism is quite as in 
quantum mechanics, the latter being in fact embraced by the former. As 
an example one might consider stationary perturbation theory. Perturba­
tion theory is useful when one knows exact solutions of many cases of 
equations of motion, the neighbouring cases being then easily approximated. 
The examples of analytic solutions discussed in § 6 can in this respect 
serve as a basis, both for indivisible systems and for, e.g., one-way systems.

Propagators

We introduced in (2.7) the propagator T(x,/; x',/') as an expression 
for the integrated equation of motion, such that

n(x,/) = fdx'7’(x,/; x', f )n(x',/'), (3.27)

Mat.Fys.Medd.Dan.Vid.Selsk. 38, no. 9. 2
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where, for t = t', T = ôÇx-x'). The propagator is defined for t > t', but 
not necessarily for t < t'.

The equations of motion for the propagator are obtained from (3.27) 
by differentiation with respect to the time variables. Differentiate first (3.27) 
with respect to t, and find from (2.9), since a(x',t') may be chosen arbi­
trarily,

— T(x, t ; x,/') = J dUr(-D y> 0 y’(y-f O> (3.28)

d =
or -T(f, /') dt y '

= F(f) • T(t, t'), i.e. again the equation of motion (2.9). Simi­

larly, we differentiate (3.27) with respect to t' and obtain

^pT(x,t; x',t') = - $dyT(x,t-, y,t')r(y,x',t'). (3.29)

We have hereby seen the significance of the equation of motion for the 
conjugate field, (2.20), the latter being identical to (3.29).

The above concerned the propagation of a field, cf. (3.27). The propa­
gation of the conjugate field is evidently determined by

b(x',t’) = $ dxb(x,t)T(x,t; x',t'\ (3.30)

or 6(f) = 6(/)- f (/,/').
If we specialize to the case of time-independent equations of motion,

i.e.  the fifth constraint, or (2.14), we get from (3.27)

r= T(x,x',f-r) = T(x,x',t), (3.31)

the propagator being dependent on only the time difference r = t - and 
defined at least for r > 0. It follows that then

|f(T) - F(r)-F - F-F(r) = l[F(r)-f + f-f(r)]. (3.32)
dr

the change of T being determined by its anticommutator with r. 
The equation of motion of the transposed T-matrix is

j ?T(O = Tt(t) + TT(r)- F3'], (3.33)
ox

being thus governed by the transposed /^-matrix.
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Reversibility in Space

Let us consider transitions in space during finite times. For definiteness, 
suppose that at time C the field is u(.r,/i) = ô(.r-.ri). Ask lor the field 
at time /2 in the point .r2, u(x’2,/2), and call this field the transition rate 
/Ja(.ri -> -t2,/i -> t2). According to (3.27) the transition rate is given by the 
propagator

Pa(Xl X'2, tl-+tz) =

and analogously for the conjugate field, cf. (3.30),

Pb(Xl -> X2, tl -> = T(.XlJi; X2,t2).
It follows that

Pa(xi -> .r2, ti -> /2) = P&(x2 -> xi, ti -> ti). (3.34)

The formula (3.34) is in fact of quite general validity, in that it states: If 
Pa is defined for a transition, then Pb of the opposite transition is also defined 
and equal to it.

Consider next time-independent equations of motion. According to 
(3.31), eq. (3.34) becomes

Pa(xi -> t2,t) = Pb(x2 xi,-t) = 7’(.r2,.ri,T), (3.35)

where r = /2 - ti.
Finally, we suppose that there is microscopic reversibility in space, i. e. 

we are concerned with z-space, where y(zi,Z2) = y(z2,zi). The a- and b- 
fields in z-space are called a and ß. It is now observed that since ÿT = ÿ, 
the equations of motion (3.32) and (3.33) for T(r) and 7,r(r) are identical. 
Since the initial value is symmetrical, 71 (0) = 7’T(0) = <5(z2 - zi), it follows 
that T(t) = 7’2(t), or from (3.35)

pa(zi -> Z2,t) = 7Ja(z2 -> Z1,T) (3.36)

and this again is equal to Pß(z2 -> zi, -r) = P^(zi 22, -t). Eq. (3.36) 
states that if there is microscopic reversibility in space, then macroscopic 
reversibility in space follows. The result is valid in the same strong sense 
as (3.34). A transformation of (3.36) to arbitrary coordinates yields

_ Pg(x2 -» ar,r) 36')
g°(t2) a°(.ri)

so that transition rates are weighted by the equilibrium distribution.
2*
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§ 4. Degradation Functions

The concept of entropy and the properties of entropy are familiar from 
statistical mechanics and from thermodynamics. The present integral equa­
tions contain main features of statistical mechanics. One might therefore be 
tempted to introduce entropy as a recipe, without further ado, thus obtaining 
a measure of the degradation of the field within a system. This is in fact a 
possible procedure. It appears the more plausible since entropy also plays 
a central role in the mathematical theory of information9- 19).

But in the present discussion we need not rely on concepts derived from 
applications. It seems therefore worth while to attempt independently a 
general formulation of the concept in question. We shall do this in the 
beginning of the present chapter. W'e arrive at the noteworthy result that 
entropy represents merely one choice within a family of degradation func­
tions. Next, we briefly discuss the use of degradation functions as describing 
the trend towards equilibrium. It appears that entropy often is not the most 
convenient choice of degradation function.

Basic Requirements

Wre ask for a universal quantity characterizing the state of a system. A 
quantity of this kind we call a degradation function. WTe make the following 
two demands, to be explained presently in more detail:

1. A degradation function must be unique, invariant, and common to 
indivisible systems.

2. A degradation function must have a well-defined rule of composition 
for a system consisting of two completely independent systems.

Consider the first demand. The stipulation of uniqueness has a straight­
forward meaning. As to invariance, this means that a degradation function 
remains unchanged, whatever transformation is made of the spatial co­
ordinates of a system. Thirdly, we express the desired universality of the 
degradation function by requiring explicitly that it is common to indivisible 
systems. Indivisible systems form an exceedingly wide group, with the 
property of unique and positive equilibrium distribution. It may turn out 
that degradation functions apply for a still wider group of systems, but we 
need not mince matters by going beyond indivisible systems.

A degradation function must be of type of the projections introduced 
in §2. They are of two kinds: projections of spatial functions, </'(x)> in
(2.16),  and projections of functions of the field, <ç(a)> in (2.17). In these 
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integrals the differential dP = a(x,P)dx is invariant, and thus /(.r) and q(u) 
must be invariant too.

It is not particularly difficult to ascertain that projections of spatial functions 
do not fulfill the above demands. Without going into detail, we may briefly indicate 
some of the main aspects. One would expect that f(x) is a function given beforehand, 
independently of the equations of motion of the system in question. Now, since 
f(x) is invariant, it may be expressed by the invariant ô-field, i.e. in terms of its 
complete set of eigenfunctions bv(x). But if f(x) is to be independent of the equa­
tions of motion, there remains only the uninteresting choice f(x) = ôoGT) = const. 
On the other hand, if f were allowed to depend on the equations of motion, it could 
not be unique and common to all systems within discrete or continuum spaces.

Let us turn to functions of the field. In order to secure invariance we 
must introduce the invariant field a = a(x,t)/a°(x), defined in (3.5). It 
exists for any indivisible system. The only quantities fulfilling the first 
demand are therefore, expressed in normal coordinates,

D(0 = <g(a)> = J dza(z,0g(a(z,0), (4.1)

where g (a) is arbitrary, so far.
Introduce now the second demand. Suppose that the physical quantity 

in question is I)i and D2 for two independent systems, and that it is D12 
for the two taken together. The demand is then that there is a well-defined 
rule of composition,

P12 = G(Di,D2). (4.2)

This demand is often implicitly made by introduction of physical variables, 
sometimes as a more incautious statement of additivity or superposition.

Before applying (4.2) we consider the notion of independent systems. 
Let there be two systems, described in normal coordinates by the fields 
ai("i,0 and oi2(z2,t). The systems are independent if ai(zi,f) and <Z2(z2,/) 
separately account for their future behaviour. The two systems can also be 
considered as one system with a field a(zi,Z2,f), if

a(zi,Z2,0 = ai(zi, f)a2(z2, (4-3)

where the fields are normalized to unity.
The second demand, (4.2), can now be formulated by means of (4.1) 

and (4.3). For the total system one has

B12 = <g(a(zi,z2, f))> = Jdzi J(/z2a(zi,z2,/)q(a(zi,z2, 0), (4.4)

and for the individual systems
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A = <7(ai(n,/))>! = c/riai(zi, Oç(ai(zi,/)),
(4.5) 

/>2 = <7(<X2("2, 0)>2 = J </"2ûC2("2, O 7(a2("2, 0) •

The solutions of eqs. (4.2), (4.3), (4.4) and (4.5) may be readily guessed. Let 
us indicate a more systematic procedure. Put a2(z2,0 = s = const, in one region 
of zo-space, and oco = 0 outside this region. Eq. (4.2) then becomes, according to eqs.'(4P3), (4.4), and (4.5),

<?(£«1)>1 = G(<ç(ai)>i, ç(ê)). (4.6)

In eq. (4.6) we next vary ai(zi), retaining normalization of ai and keeping <<?(o<i)>i 
constant. Since G is then unchanged, also <ç(£ai))i must remain unchanged. In­
troducing Q(a) = d(aç(a))/da, one obtains, by variation of ai, the functional equa­
tion Q(£ai) = Ci(£)Q(ai) + which may be solved (Q(a) c + an or c + log a). 
A precise discussion of the functional equation is given in ref. 2.

The solutions for q are then

ç(a) = Cxn and ç(a) = — Clog a, (4.7)

the latter solution being due to the normalization condition for a, i.e. to conserva­
tion of the field. We have in (4.7) omitted a spurious solution, ç(a) = Ca_1 log a, 
for which the projection often diverges, in particular within an infinite system.

We have thus arrived at the family of functions satisfying the two de­
mands. We call them degradation functions, writing

//”)(/) = Jd-a(;,/)[a(z,/)]ft, (4.8)

and denoting by S the familiar entropy,

S(t) = - f dza(z, £)loga(z, f), (4.9)

where the arbitrary constants in eq. (4.7) are omitted. The number n in 
eq. (4.8) is the order of the /^-function. If one limits the order to be n > 0, 
convergence is always secured.

The value n = 0 in (4.8) is the trivial normalization. Note here that 
the entropy, (4.9), which arose from conservation of the field, is the deriv­
ative of a D-function,

d
-----

dn
1

---- log 
n

D^-l

n = 0 n-> 0 n

Entropy is thus a degradation function of order zero.
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Il follows from eqs. (4.9) and (4.8) that when a system is composed 
of independent systems, then the entropy is additive, as is also the logarithm 
of the Z)-functions,

logDg*  = logDj”* + logD'M), I
S12 = Si + S2. I (4J1)

Strictly speaking, only the changes of the quantities in (4.11) are well- 
defined. This is because they contain an arbitrary additive constant in a 
continuum description, arising from an arbitrary factor in the definition 
of z, whereas y.dz is invariant. The arbitrary constant is removed in the 
case of a discrete variable with finite N. This contrast is well-known for 
entropy in classical statistical mechanics as compared with quantal statis­
tical mechanics.

The likeness between entropy and the J)-functions, as contained in eqs. 
(4.11) and (4.10), may be further elucidated by introducing a set of func­
tions S(w>,

1
S<«> = --logZ)<«>. (4.12)

71

According to eq. (4.10), S(0) = S. Moreover, consider the example of a 
discrete variable, k = 1,2, . . . , N, with equilibrium a® = a® = . . . = a°v = 
1/N. In an initial state, where one is unity, the others zero, we find that 
all functions in (4.12) are = 0. In the final equilibrium they are all 
S<«) = logAk Between the two extremes the different functions attain quite 
different values. The equality of the functions at the extremes is only due 
to the freedom in selection of origin and in unit of degradation. The like­
ness may, however, be one reason why attempts at deducing degradation 
functions from general principles have led only to the entropy, omitting 
the D-functions.

Monotonic Change in Time of Degradation Functions

We now apply the linear integral equations of motion, in order to find 
the time behaviour of the degradation functions. It will be shown that for 
indivisible systems the D-functions always decrease, when the field deviates 
from the equilibrium solution. According to (3.8) and (3.10) we can write 
the equation of motion as

«(V) = $ dz'{g(z,z')cc(z\t) ~ a(z,t)(Cg(z\z) + (1 - C)g(z,z'))}, (4.13) 

where C is an arbitrary constant.
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The time derivative of the function Z)(ra>(t) is therefore, according to 
(4.8),

- (n + l)J<fe

- Caw + 1(z',t) -

In this equation we can choose the constant to be C = (n + I)-1. Next we 
introduce an auxiliary function

/n(0 = (n + l)(f-1) + 1 -^n + 1, 0 < ê < oo, (4.15)

with the property /*«(1)  = 0, while fn(£) < 0 for £ 4= 1 and n > 0.
In eq. (4.14) the function xn + 1(z,f) is taken outside the brackets, so that 

^Z)(«)(0 = |dz|dz'g(z,z')a«+1(z,O/‘nf^^j. (4.16)

Within the family of degradation functions, the time behaviour of the first 
order D-function is particularly simple for linear equations of motion. We 
specify (4.16) in this case

/)(!)(/) = - dz$dz'g(z,z'){cc(z,t) - a(z',t)}2, (4.16')

where we can replace g(z,z') by gs(z,z') = (g(z,z') + g(z',z'))/2. Moreover, 
7J6) itself has a simple geometric interpretation, /J(1) = ä-ä, being thus the 
square of the vector ä, for which 1 -a = 1.

It can be readily concluded from eq. (4.16), because of the properties 
of that for indivisible systems, and for n > 0,

d oc(z',f)
— D^n\t) < 0, unless---------  = 1 for all z, z'. (4.17)
dt a(z,f)

In fact, suppose that /)(w)(/) = 0. Consider an arbitrary point za, where 
a = a(za,t). According to eq. (4.16), all points zi for which gs(za,zi) 4= 0 
must have a(zi,t) = a(za,t). The points zi communicate directly with other 
points Z2 which must have the same value of a. Since the system is indivis­
ible, the arbitrary point za must communicate in this way with any other 
point Zb, such that a(za,t) = a(zb,/), from which follows eq. (4.17).

We have thus proved that all D-functions decrease monotonically to­
wards their equilibrium value. The monotonic behaviour of entropy is also 
a consequence of (4.17). To be precise, the time derivative of entropy is

a
dt v 7
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according to (4.10) obtained from (4.16) by division with n, letting n -> 0, 
whereby, in the integrand, fn/n -> f = £ - l-flog£, i.e. one obtains the 
auxiliary function of Gibbs7).

Several conclusions may be drawn from (4.17). It follows, for instance, 
that any non-uniform function in z-space, normalized to unity, has a higher 
value of than the normalized uniform distribution, for any n > 0. 
Further, we have proved previously that there is only one equilibrium of 
the linear equations of motion. It does, however, also follow from (4.17) 
that there could be no equilibrium solution other than the uniform distribu­
tion, because dD^jdt + 0 for all other distributions.

§ 5. Connection to Differential Equations

We consider differential equations of first order in time and of first or 
higher order in space. Such differential equations have merits on their own, 
and can be considered as possible equations of motion obeying the con­
straints. Apart from this, they are often useful approximations to integral 
equations, and in diffusion phenomena they even lead to quite accurate 
solutions. The familiar approximation involved in a differential equation 
is that G(.r,y) is negligible unless |x - y| is small. By expansion one may 
then obtain a differential equation in x, usually of second order.

We briefly discuss the limitations put on a differential equation by the 
constraints in § 2. It turns out that differential equations can be of, at most, 
second order in space. The differential equations imply a trend towards 
equilibrium, with the notable exception of first order equations. We finally 
study the symmetry properties of the diffusion equation, and its use as an 
approximation to the integral equation.

Basic Structure

When trying to find the possible structure of differential equations, one 
might start from the basic integral equation, (2.13). We prefer to use the 
equivalent procedure of introducing the initial four constraints of § 2. In 
order to have simplicity of notation we consider the one-dimensional case. 
According to the first and fourth constraints, (2.1) and (2.4), we demand 
that, if the derivatives dna(x,f)/dxn are given, then the time derivative 
à(x,f) is known, being linear in the spatial derivatives. To finite order, N, 
we therefore find

(5.1)
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In order to retain conservation explicitly, i.e. the second constraint, (2.2), 
we introduce ci (æd) as minus the divergence of the current density, (2.23),

h(.r,/) = - — ./(æd), 
dæ

(5.2)

expanding the current in spatial derivatives of a (æd),

N-l ()n
= - 2 (5.3)

n = 0 OX

The number of independent functions in (5.2), (5.3) is one less than in 
(5.1), giving the condition on the Ån's,

d
Ån(x,f) = — dw (æ,/) 4- /ln-l(æd), (5-4)

OX

with /Ijv = 0.
The freedom in the above scheme is strongly reduced by the third con­

straint, (2.3), demanding that a non-negative a (æd) remains non-negative 
at all later times. Suppose therefore that a (æd) = 0, and accordingly 
a'(æd) = 0, a"(æd) > 0. It should then follow that ci(æd) > 0. This places 
no restrictions on Âo(æd) or 2i(æd), but Â2(æd) must remain non-negative, 
Â2(æd) > 0.

Consider next the possibility of a differential equation of finite order N, 
i.e. (5.1), with AT > 2. We may suppose that, at a given time / = 0,

(æ 4- C
u(æ, t = 0) = - (5.5)

This function is normalizable and it is positive everywhere, except at the 
origin, where a (0,0) = 0, aw(0,0) = 2Cw-7V!, all lower spatial derivatives, 
except cz"(O,O) = 2, being zero. Therefore ci(æ = 0, f = 0) = Â2 • 2 4- Ån ‘ 2C^iV!, 
and since Cn may be chosen arbitrarily, the coefficient Ân in (5.1) must be 
Ån = 0, in order to fulfill always ci(0,0) > 0. The differential equation (5.1) 
therefore cannot be of higher than second order, if it obeys merely the first 
and third constraints. If we assume conservation, (5.2), we can only be 
concerned with the diffusion equation, or Fokker-Planck equation,

à(æd) = - D(x,t)--a(x,t) - — iv(x,t)a(x,t),
ox ox ox

(5.6)



Nr. 9 27

with the current j(x,t) = - I)(x,f)a'(x,t) + w(x,f)a(x,t), and where 
D(x,f) > 0.

In the case of multi-dimensional space the proof is completely analogous 
to the above one. The result is that one can only permit the following equa­
tion

a(x,t) Dik(x,t)——a(x,t)Wi(x,t)a(x,f). (5.7)
i,k dxi dxk i dxi

where the matrix Da at any space-time point has non-negative eigenvalues, 
like I) in (5.6), because à must be non-negative when a = 0. Note that 
we can always choose the matrix to be symmetric, DikÇx,G) = Dki(x,t). 
With this choice there is a unique separation between the two terms in (5.7).

The impossibility of spatial derivatives of higher than second order is 
rather remarkable. It does not seem to be explicitly noted in connection 
with derivations of diffusion approximations. On the contrary, it is some­
times stated that higher order terms in an expansion are small and can be 
disregarded5), or it is attempted to introduce explicitly a term of higher 
order10) (cf. also ref. 18, p. 238).

The above result shows that differential equations are not very flexible, 
and can hardly be expected to represent even the main general features of 
the basic integral equation. Quite apart from this conclusion, the actual 
kernels G(x,y) with which we shall be concerned (cf. § 6) will often de­
crease comparatively slowly for |.r - y\ -+ co, leading to e.g. a divergent 
moment (x2) of the distribution. This does not fit in with a diffusion equa­
tion.

The equation for the conjugate field corresponding to (5.7) is easily 
obtained from (3.27)—by differentiation with respect to t'—-

b(x,t) = ~^-I)kiÇx,t) . b(x,t). (5.8)
i,k dxi dxk i dxi

The first operator in (5.8) is equal to minus the first operator in (5.7) if 
Dik is symmetric. The second operator in (5.8) is equal to the second one 
in (5.7), provided divui = 0.

Let us finally note that the diffusion equation may be considered as a singular 
operator to be added to the integral equation, because it only results from an in­
tegral equation by a limiting process. The integral equation (2.13), with a continuous 
G(x,y,t), we denote as à = ^(Øa. Similarly, the diffusion equation (5.7) is à = 
0d(T)a. Within the present context the most general equation of motion, obeying 
the first four constraints, is à = Oi(t)a + 0d(T)a.
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Trend towards Equilibrium; Reversibility

We have previously shown, in §§ 3 and 4, that all systems with one 
equilibrium a°(.r) > 0 tend towards this equilibrium if, in the integral 
equation, G(x,y) does not vanish for all y +x. The diffusion equations 
constitute a somewhat singular limiting case. Let us consider the trend 
towards equilibrium by means of the degradation functions.

We may suppose, without essential loss of generality, that in (5.7) the 
equilibrium function u°(.t) is a constant, corresponding to normal coor­
dinates,

o°(ïr) = const., i.e. divw(ir) = 0. (5.9)

4’he latter equation shows that n(.r,/) corresponds to the density of an in­
compressible liquid.

From (5.7) and (4.8) we find directly in a space of m dimensions,

d d f .74<n)(/) = —\d.r (r/(.r, t))» + 1 
ot dl 1

(5.10)

where we use that the current vanishes at the boundaries, or that the system 
is periodic. The equality sign in (5.10) holds only in equilibrium for an 
indivisible system, for positive eigenvalues of A*-

The proper diffusion equation is thus irreversible, like the integral 
equation. Still, there remains one singular exception since, if = 0 every­
where, all degradation functions remain constant. The remaining reversible 
first order equations, fulfilling (5.9) for indivisible systems, are

= - div [m(r, t)a(x, /)], divw(ir,/) = 0. (5.11)

It follows from (5.8) that the conjugate field also obeys (5.11). The eigen­
values 2.n of (5.11) are purely imaginary and, as mentioned, all degrada­
tion functions are constant in time.

Eq. (5.11) is just of the kind with which one is concerned in a Hamil­
tonian description of the motion of an ensemble in classical phase space, 
with .r = (.ri, . . . , .T2.v) = (71, ■ • • , (]n, pi, ••• , Pn)- The’ Hamiltonian 
equations of motion are inconveniently singular, in the sense that the least 
deviation from (5.11) brings about irreversibility.
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It may be noted that the first order equation of motion (5.11) is the only pos­
sible one, if the first constraint is tightened. In fact, when the first four constraints 
are valid, the general equations (2.13) follow. Suppose here that the first constraint 
(2.1) is modified by the demand that a(x',t') is determined by a(x,Z) not only for 
t' > t, but also for t' < t. It follows that for x + y the kernel G(x,y,f) is both non­
negative (from t' > t) and non-positive (from t' < Z). We are then left with the 
singular case of infinitely narrow G, i.e. the differential equation (5.7). But here, 
again, the eigenvalues of Dik must be both non-negative and non-positive. There 
only remains first order equations, i.e. (5.11) if, e.g., the system is indivisible.

One-dimensional Diffusion Equation

Let us study the one-dimensional diffusion equation, (5.6). Il is worth 
while to consider this case in detail, although it lacks some of the features 
belonging to multi-dimensional spaces.

We assume that 1) and w are independent of time, and that D > 0 every­
where within the system. Suppose that the boundary conditions demand 
zero current at the boundaries. The equilibrium then corresponds to zero 
current throughout, or D(x')a°'(.r) = if (.r) c°(.r). We transform to normal 
coordinates and obtain, with dz = a°(x)dx,

d d

dz dz
(5.12)

where

&(z) = Z)(x)(a°(æ))2, = exp{

The term containing w has thus disappeared, and the equation of motion 
for ß(z,t) is according to (5.8) given by (5.12), with opposite sign. One may 
easily verify that the eigenvalues Xv are real. Moreover, we have found, in 
(5.10), that (5.12) tends towards equilibrium.

Show next that (5.12) leads to reversibility in space, in the sense stated 
in (3.36). The propagator T defined in (3.27) is T(zi.tr, Z2,tï) = 
= T(zi,Z2, Therefore the equation of motion

d .
— T(zi,Z2,t) = y 
dr

T(z1,Z2,t)

is symmetric in zi and Z2. Since T(zi,Z2,0) = ô(zi —Z2), one finds macro­
scopic reversibility in space

Pa(zi-»Z2,T) = T(Z2,Z1,t) = T(Z1,Z2,t) = Pa(z2 Z1,t). (5.13)

Note that (5.13) and the previous conclusions drawn from (5.12) are valid 
also in the multi-dimensional case if = 0 and Dtk = Dki in (5.7).

Mat.Fys.Medd.Dan.Vid.Selsk. 38, no. 9. 3
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The equation (5.12) is therefore so far in accord with an integral equa­
tion with microscopic reversibility in space, </(z,z') = g(z', z). If g(z,z) is 
asymmetric, eq. (5.12) becomes a less appropriate approximation.

In (5.12) we considered a system with closed boundaries, and therefore 
the ui-term disappeared. If the system instead has periodic boundary con­
ditions, the m-term in (5.6) does remain and is connected with the antisym­
metric part of </(z,z'). A diffusion approximation to a one-way integral equa­
tion is mentioned in § 6, cf. (6.19) and Fig. 3.

Diffusion Approximation

The diffusion approximation is not completely well-defined. Let us 
indicate one way of deriving its coefficients. We suppose that G(x,x') is 
given in eq. (2.14), but that the equilibrium need not be known. The as­
sumption belonging to a diffusion approximation is that the kernel G must 
decrease rapidly when \x — x'| increases, whereas G varies slowly with 
change of |x + x |. We therefore introduce new variables, £ = (x + ,r')/2 and 
r/ = x-x', writting (j(lr,x') = Q(Çjrj)- Since Q = Q(îr - 5^/2,^), we may ex­
pand in powers of ?? in the former coordinate which varies slowly with 
£ = X-I7/2. In the integral equation

5()r,/) = \ d(m^g{Q(x/2,7])a(x - Q(x-T]l‘2,-^)a(x,t)}

we then expand, to second order in g. The result is eq. (5.7) with

The approximation (5.14) appears acceptable, but it usually does not lead 
to the exact equilibrium distribution, a°(x). Thus, consider a one-dimen­
sional integral equation and suppose that a°(x) = const, with zero current 
at the boundaries. If G is symmetric, one does obtain (5.12) from (5.14), 
but if G is not symmetric there appears a m-term, as implying a non-uniform 
equilibrium distribution in the diffusion approximation.



Nr. 9 31

§ 6. Examples of Analytic Solutions

This chapter is devoted to exact solutions of the simplest integral equa­
tion for continuum variables. The advantages of these examples are three­
fold. They correspond to typical cases within atomic collisions. They allow 
solutions of neighbouring equations by perturbation methods. But, fore­
most, they give a direct insight in the integral equations, showing for in­
stance the similarities and dissimilarities to differential equations.

We consider mainly two extremes. One is symmetric kernels of indivis­
ible systems, as exemplified by multiple scattering at small angles. The 
other concerns one-way systems, connected with energy loss distributions 
of energetic particles. Finally, we solve an example of multiple scattering 
with inclusion of large angles.

Elementary Basic Systems

The simplest kind of continuum systems is the one with displacement 
invariance in space, cf. eq. (2.6), corresponding to validity of all of the six 
constraints in §2. It follows that <7(æ,y) = g(x-y), and the equilibrium 
solution is in fact a0 = const, for g = ^(|x-y|). Note here that we consider 
primarily the one-dimensional case and, in order to secure simplicity of 
the analysis, we impose the mild condition of periodicity with an arbitrary 
long period L. The integral equation is, with g(rß) real and non-negative

à(.r,/) = f dv]g(rß){(x.(x — g,C) — a(æ, /)} (6-1)

and that of the conjugate field

^(x,0 = - ^dgg(~ r/){ß(.r - g,t)-ß(x,t)}. (6.2)

Because of displacement invariance the eigenfunctions of the field are plane 
waves

afc(.x) = exp(+zÂ'x), ß*(x)  = exp( - zkr), (6.3)

where k = Znn/L. The eigenfunctions obey $dxßk(x) &i(x) = L-ôk,i> and 
ßk = X-ic.

The eigenvalues are, according to (3.15),

A(i) - JrfW(»))(l - (6.4)

Apparently, if g(rß) is symmetric, i.e. g(rß) = (/(-r/), the eigenvalues are 
real and Â(À) = Â(-Â’). If there is asymmetry, the eigenvalues are complex 

3*  
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numbers, and Å(Å’) = Å*(-Å').  The case k = 0 corresponds to equilibrium, 
with Â(0) = 0. The other eigenvalues have a real part greater than zero.

As to asymptotic behaviour, it is apparent that </(//) must decrease 
faster than |?/|—1 for |zy| -> co, in order that the x*  converge. Similarly, for 
|z/| -> 0, the symmetric part of </(//) must diverge less than whereas 
the asymmetric part must diverge slower than |//|-2. The fundamental solu­
tion of (6.1) is the propagator, T(.r,f), which for t = 0 is 7’(.r,0) = d(.r). 
According to (6.1), (6.3) and (6.4) we find for t > 0,

1 _
7’(.r, f) = — 2 erkx e (6.5)

£ fc

In the solutions in the following we consider L as infinitely large in (6.4) and
(6.5).  We replace the summation (6.5) by an integration,

00

T(æ,/) = \ dk eikx e~^k>,t. (6-5')
2tt i 

e/ 
— 00

The seemingly innocent transition from (6.5) to (6.5') is not without consequences 
for the properties of some systems, because the properties depend on the boundary 
conditions. When (6.5) is applied exactly, the field will return through the periodic 
boundary, and there will always be an equilibrium a0 = l/£. If g is asymmetric, 
the equilibrium has an internal current in the system, and even a one-way system 
becomes indivisible. If we use (6.5'), however, the field does not return, and the 
system is an open one. In this case there is uniform equilibrium for a symmetric 
g, but not for one-way systems. This feature, together with a Galilei transformation 
of one-way systems, is discussed on p. 39, cf. (6.20). Although one thus finds note­
worthy differences between (6.5) and (6.5'), it should be remembered that in prac­
tice the solutions of (6.5) and (6.5') do not differ for finite times / and large L.

The simplest choice of g is the power law

(6.6)

We distinguish between the symmetric case

tfnOO = ()</)< 2, (6.7)

the possible range of n being indicated, and the asymmetric one-way case

M?'/)> g > 0,

0, î) < o,
0 < n < 1. (6.8)
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We can now derive A(k), so that it only remains to integrate (6.5'). In 
the symmetric case we obtain from eqs. (6.6), (6.7) and (6.4)8*

4(0 - A« = 2C„r(tz:')cos^n = c ------” , (6.9)
n 2 r(n + l)sin-n

where 0 < n < 2. Correspondingly, in the asymmetric case, from eqs. (6.6), 
(6.8) and (6.4), for k > 0,

/(I — 7?) fin \
Å“(k) = \k\nA„, Aan = Cn -exp/ —(6.10)

where 0 < n < 1, and A®(- k) = (â®(à))*.
The simple structure of solutions for power law kernels may be obtained 

directly from dimensional arguments. In fact, note that since Cn in eq.
(6.6) has the dimensions the corresponding propagators must be of 
type of T(x,C) = fn{xnICnt)x~The semi-group formed by such propagators 
is thus a stable one6*.  Stable semi-groups are familiar in the mathematical 
literature, and among the examples to be presented below at least several 
are well-known in e.g. probability theory6*.

At this point we may illustrate the formulae by an example. Suppose that an 
energetic ion moves a small distance through a substance, losing a relatively small 
amount of energy by successive collisions. The distance, or the time elapsed, may 
represent t in the above equations. 4^he differential cross section times the density 
of atoms is equivalent to girAdg. In the case of multiple scattering g is symmetric, 
cf. also p. 39. The x-component of the scattering angle in a single collision is 9X x 
the x-component of the total angle being ipx oc x. It is assumed that y>x (( 1 and 
&x << 1. A particle with initial angle 0 has therefore, at time t, the distribution 
(6.5Z). The formulae (6.6) and (6.7) are then power law scattering15*,  where Ruther­
ford scattering is the limiting disallowed case at small angles, n = 2. In fact, eq.
(6.6) corresponds approximately to classical scattering in repulsive power law po­
tentials oc R~s, with n = 2/s, so that 1 < s < oo is equivalent to the condition
(6.7) .

Next, consider the energy loss distribution of the ion. The individual energy 
loss, g, has a one-sided distribution given by (6.8). The total energy loss, x, is then 
distributed according to (6.5'). The above power law angular distribution corre­
sponds to n = 1/s, so that, again, Rutherford scattering is the upper limit n = 1 
in (6.8), and 1 < s < oo is the allowed region in (6.8).

Thus, at low angles and for small relative energy losses the power law formula 
(6.6) serves as a useful basis. In practice, the above formalism without (6.6) has 
been used in numerical studies of the more complicated case of multiple scattering 
by Thomas-Fermi type screened Coulomb potentials by Molière17*,  cf. also 
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Scott18) and Meyer16). An energy loss distribution was studied by Landau11), 
in the important but again more complicated case of Rutherford scattering (n = 1 
in (6.8)) with a cut-off at low energy losses.

Symmetric Distribution, n = 1

It is evident that the simplest distributions T(x,t) will result if, in eq. 
(6.6), n is an integer or a fraction of low order. The symmetric case with 
n = 2, i.e. Rutherford scattering, is divergent, but would have led to a 
Gaussian distribution in (x//1/2), according to eqs. (6.5') and (6.9). It is re­
placed by the second order diffusion equation in § 5. Similarly, the asym­
metric case with n = 1 is again Rutherford scattering and divergent. In its 
place appears the first order differential equation in § 5.

For integer n we are left with the symmetric case and n = 1. This is 
apparently multiple scattering with s = 2, i.e. closely corresponding to 
scattering by a repulsive 7?-2-potential. From eq. (6.9) we get ^(Å-) = |Å’|Citk, 
and by integration of eq. (6.5'), for t > 0,

Cit
X2 + 7l2 Cf t2

(611)

This distribution occurs in numerous connections. It is known as the Cauchy 
distribution6). In physical problems it is particularly familiar as a Breit- 
Wigner formula. The width of the distribution (6.11) increases proportion­
ally to time. If x » TiCit, the propagator is ~ Cite-2, i.e. determined by 
a single scattering process from the origin. The system is indivisible with 
uniform equilibrium, according to eq. (6.1). Correspondingly, we find that, 
for arbitrary xi and X2, T(xi,f)lT(x2,t') -> 1 for t -> oo.

We find that eq. (6.11) obeys a second order differential equation of
Laplacian type

/ d2 1 d2\
\dx2 + rfcfdt2) T{(x,t) = 0, t > 0. (6.12)

The integral equation in the present case thus picks out one solution of a 
second order differential equation in time.

It may finally be noted that the propagator corresponding to (6.11) is 
readily found in a space of dimension v > 1. The propagator is in fact 
proportional to Ci/-(r2 + %2C^2)-1^1.
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One-way Distribution, n = 1 /2

In the asymmetric one-way case, where 0 < n < 1, the simplest case 
must be n = 1/2. According to eq. (6.10) one obtains A? = |/c|2Ct(2%)i(1 + z), 
k > 0. By integration of eq. (6.5'),

a C\t [
Ti(x, 0 = —vexp------ — , x > 0. (6.13)

X? \ X

For large x, the distribution is ~ C^tx~l, and therefore already the first 
moment, diverges. The distribution has a maximum at xp = 2nC\t2/3, 

2
moving with an acceleration g = 4nCi/3. The distribution (6.13) is shown 
in Fig. 2 together with (6.16).

The propagator (6.13), when considered as an energy loss distribution, 
as described previously, corresponds to s = 2. It thus represents an energy 
loss distribution associated with the multiple scattering distribution (6.11).

3*
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Fig. 2. Stable one-way distributions for n = 1/2, (6.13), and n = 1/3, (6.16), normalized to
2

unity. The abscissa is chosen as y = x/(ttCa/2) for n = 1/2, and y = const-x/(C/)3 for
2

n = 1/3. The scaling for n = 1/3 is arbitrarily chosen to give equal heights of the two curves.

1
70) = C(z) cos

(6.14)\ •2

1
2

n 9

The (/-function is a smoothly decreasing function. It is tabulated in ref. 1 ; 
a crude estimate is (/(z) (2 + 4z + zt2z3)-1.

The symmetric propagator for n = 1 /2 becomes, in terms of the Fresnel 
//-function,

Symmetric Distribution, h = 1 /2

The symmetric distributions are, as it seems, less simple than the asym­
metric ones with the same index n. For n = 1/2, the symmetric propagator 
becomes of type of Fresnel’s integrals (cf. ref. 1). In fact, the Fresnel 7- 
function is defined as

C(z) = \cos
do

(6.15)
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This function is shown together with eq. (6.11) in Fig. 1. Like eq. (6.11), 
it tends towards a uniform distribution for I -+ œ, and the tails of T\ cor­
respond to single scattering.

One-way Distribution, n = 1 /3

The index n = 1/3 for the asymmetric distribution implies 
= |Ä'|3’Ci P(2/3) (3? H-z)3/2. The one-third power of |Ä’| indicates con­

nection with Airy functions, and a somewhat lengthy calculation yields in 
fact, for x > 0,

C = C.3sr(2/3) = CjMf(O),

Az(z) being the Airy function1). The distribution is shown in Fig. 2. Its 
general behaviour is somewhat similar to eq. (6.13), but the .r-coordinates 
expand as t3.

Apart from the above examples a comparatively simple further case is 
T3(t,/), which must decrease as |.r|~5/2 at large |.r|. It is intimately con­
nected with the so-called Holtsmark distribution4), but we shall not study 
it here.

One-way Distribution, n = 1/2, with Screening

The power law scattering (6.6) is a quite special example of displace­
ment invariance. For one, the moments, such as <A2), are divergent. It is 
then not easy to compare with a diffusion equation approximation. Next, 
one-way distributions with finite have a constant average velocity, and 
the corresponding transformation to moving coordinates is of interest. In 
many practical cases, like energy loss distribution, there will in fact be an 
upper limit beyond which f/Ç/'/) = 0.

Let us therefore briefly study a simple example of screened power law 
distribution, where gttf) in (6.1) is the one-way distribution

(6.17)

This corresponds to the case (6.8) with n = 1/2, as studied above, but now 
with screening given by the constant a. Transform to dimensionless vari­
ables £ and t in place of x and /,
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Fig. 3. Screened one-way distribution, (6.18), and its diffusion approximation (6.19), as func­
tions of space, £, and time, r. The asymmetric curves are the exact screened distributions; the 
symmetric curves represent the diffusion approximation. The two full-drawn curves correspond 
to time T = 1/2, and the dashed curves correspond to time r = 3/2. The exact distribution 

always intersects the diffusion distribution at its maximum.

£ = xcc, T = Ct'fnatft.

By integration of (6.4) and (6.5') we get from (6.17)

T I (r —£)2I
= -Ï7Ï exP )------ 7 • (6-18)

I £ I

The distribution (6.18) is shown in Fig. 3 for two values of the time vari­
able, t = 1/2 and r = 3/2. The average velocity of the distribution is con­
stant, and in fact <£> = r. The average square deviation increases with 
time as <£2> - <£>2 = r/2. The most probable point at a given time is £p(r) = 
= - 3/4 + (9/16 + r2)1/2, and is initially accelerated but tends towards having 
constant velocity, £p(t) -> t - 3/4.

The diffusion approximation (5.14) to the integral equation is determined 
by the above two moments. The solution of the diffusion equation is a travel­
ling Gaussian distribution,

1 /-(£-r)2\
Tdiff(£,r) = -x , exp------------- . (6.19)

7T?T2 \ T /



Nr. 9 39

The diffusion approximation (6.19) is shown together with (6.18) in Fig. 3, 
for the same values of r. The deficiencies of TTiiff are not merely that, for 
small r, a substantial part of the function is in the disallowed region £ < 0, 
but it does not show the skewness of (6.18), for which the maximum £p 
remains a distance 3/4 behind the maximum of Tcmr, asymptotically.

Although there is displacement invariance, and a(.r,/) = const, is a 
solution of eq. (6.1), this is not an equilibrium solution. That is because 
(6.7) is a one-way system, and a = const, corresponds to a constant cur­
rent through the system, which therefore is not isolated. In fact, the ratio 
T(^i,t)/T(^2,t) at any two fixed points, £i < £2, tends to zero for r -> <x>. 
It is, however, natural to transform to a coordinate system moving with 
the above constant velocity, i. e. £' = £ - r. In the ^'-coordinates the solution 
a = const, has no current. We have in fact an isolated indivisible system. 
In these coordinates both (6.18) and (6.19) tend towards the equilibrium.

The general equation (6.1) can thus be transformed to an isolated rest 
system

provided the velocity w = $dgg(rf)T] is convergent. Note that the transforma­
tion (6.20) is applicable both for a periodic system and for an open in­
finite one.

Angular Distribution, n = 1

The previous examples of symmetric systems, if applied to multiple 
scattering, are limited to small angles. Let us show, by means of an ex­
ample, how the treatment may be extended to large angles. We still suppose 
that the energy loss of the particle is small within the distances in question. 
This means that cross sections are time-independent. If v, N and do are 
velocity, density of atoms and differential cross section, we can write

vNdo = dQS(d). (6.21)

Here the differential solid angle is dQ = d<pd cos d, and d the angle of de­
flection, while 99 is the azimuthal angle. The angular distribution of current 
is S(d), depending only on the angle of deflection.

We ask for the propagator T(ip,f), i.e. the angular distribution al time 
t, if the angle is ip = 0 at t = 0. It obeys the integral equation



40 Nr. 9

dtT(V’O = J <7(cos#)S(#){ 7\?//, f) - T(ip,t)}

where ip' is given by

cosy»' = cosy»cos# + sin y? sin# siny?.

(6.22)

We expand T in Legendre polynomials, which are the eigenfunctions of the 
problem. Hereby the integration over (p leads to a factorization, and we 
obtain finally

2%7’(yU) = J (v +-J P^cosy?) exp ( - MJ, (6.23)
F = 0

where the eigenvalues Xv are

Åv = 2n J*  d(cos#)S(#){l — Pv(cos#)}. (6.24)

As to S(#), we ask for an extrapolation of power law distributions (6.6). 
Let us consider merely the simplest case, corresponding to n = 1, and pul

(6.25)

In fact, for # « 1, this becomes <S(#) -> (Ci/2) ■ ft2, where # = (#2 + #^)1/2; 
integrating over &y we obtain exactly the one-dimensional scattering (6.6) 
with n = 1.

From eqs. (6.25) and (6.24) one gets easily Â(, = %vCi and, finally per­
forming the sum (6.23)

w)
1 

47?-l(l cosy?)]3/2
(6.26)

When Cit « 1, the main part of is within small angles, and
T ™ (Cif/2)(%2Ci/2 + y?2)_3/2, i.e. it becomes the two-dimensional version of 
eq. (6.11). For large values of t, the distribution (6.26) tends to the uniform 
distribution, in agreement with eq. (6.22) being an indivisible system, with 
equilibrium T = (4%) .
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